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Abstract

This work makes a theoretical and experimental contribution to the problem of rotor–blades dynamic
interaction. A validation procedure of mathematical models is carried out with the help of a simple test rig,
built by a mass–spring system attached to four flexible rotating blades. With this test rig, it is possible to
highlight some dynamic effects and experimentally simulate the structural behaviour of a windmill in two
dimensions (2-D model). Only lateral displacement of the rotor in the horizontal direction is taken into
account. Gyroscopic effect due to angular vibrations of the rotor is eliminated in the test rig by attaching
the rigid rotor to a flexible foundation. The blades are modelled as Euler–Bernoulli beams. Using three
different approaches to describe the beam deformation one achieves: (a) a linear model; (b) a linear beam
model with second order terms; (c) a fully non-linear model. Tip masses at the end of the blades emphasize
the coupling between the dynamic and elastic terms. The shape functions are chosen in order to reduce the
mathematical model, so that only the first bending mode of the beam is taken into account. The resulting
equations of motion have five degrees of freedom and illustrate linear, non-linear and time-dependent terms
in a very transparent way. Although neither gyroscopic effect due to rotor angular vibrations nor higher
blade mode shapes are considered in the analysis, the equations of motion of the rotor–blades system are
still general enough for the purpose of the work: validation of different linear and non-linear models with
time dependent (periodic) coefficients. Experiments are carried out in the time and frequency domains while
the rotor operates with different constant angular velocities.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The main change detected in the dynamic behaviour of a rotating beam is the increase of the
natural frequencies with the rotation speed, an effect known as centrifugal stiffening. This effect is
only correctly described by a mathematical model if non-linear terms related to the beam
deformation are taken into account [1]. At least a second order linearization scheme of the
deformation vector must be employed to ensure that the effect of centrifugal stiffening is
appropriately taken into account, once those non-linear terms are responsible for transferring part
of rotation energy to the bending motion [2]. The application of such a linearization of second
order introduces a matrix of geometric stiffness, due to the terms of centrifugal stiffening.
When the blades are subjected to constant rotational speeds, this matrix may be calculated
either from the solution of the initial stress problem or from the normal force acting on the
blade [3]. However, in the most general case, this matrix is not constant, as it depends
on the longitudinal displacements of the beam [4]. The influence of the derivative of the
geometric stiffness matrix and other higher order non-linear terms, which are usually
neglected, can sometimes lead to different solutions [5]. However, after including
those high order non-linear terms in the formulation, the solution becomes extremely
sensitive to the shape function used for modelling the axial displacement. Thus, it is necessary
to include a large number of axial modes to correctly model the interaction between the
axial and transverse motion, otherwise the numerical solution becomes unstable. Mayo et al. [6]
discuss the numerical efficiency of the non-linear model for modelling rotating beams.
Another approach to this problem is to assume that the axial displacements originate
from transverse deformation without axial deformation. This approach leads to a more
efficient and stable numerical model. Moreover, it is not necessary to include any axial
mode, depending upon the range of frequencies. This kind of formulation, in which the
displacement and the axial deformation are uncoupled, is valid only for systems whose axial
stiffness is much higher than the transverse one, for example in windmills. Therefore, the correct
choice of the beam model is essential to ensure that coupling between elastic deformation and
rotational motions is properly taken into account [2].

The equations of motion for a single cantilever beam, parametrically excited, is presented by
Cartmell [7,8] using Lagrange’s formulation. The intention of that work [7] was to illustrate the
use of classical engineering theories in the accurate modelling of a very simple structure, and to
highlight the conceptualization of such a three-dimensional problem. In this work, the equations
of motion of four rotating cantilever beams, attached to tip masses and to a mass–spring system,
are obtained using the Newton–Euler–Jourdain Method [9]. This two-dimensional model is
employed to analyze how the lateral vibrations of the mass–spring system (non-rotating parts of a
structure) influence the bending vibrations of the blades (rotating parts) and vice versa. The blade
(beam) deformations are obtained using three different approaches: (a) only small displacements
are assumed, leading to a linear deformation vector and thus to a linear model of the whole
assembly; (b) large displacements are included, but to obtain the deformation vector only the non-
linear terms of the second order are considered, resulting in linear equations, with a new matrix
due to the geometric stiffness; (c) a fully non-linear model for the deformation of the beam.
Experimental and numerical results obtained with these three different models are presented,
clarifying their limitations and the range of application.
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2. Test facilities

The test rig for validating these three different mathematical models is presented in Fig. 1(a)
and described as follows:

* A rotating disc (disc + motor) is fixed rigidly to a foundation. The disc–motor–foundation
builds a single concentrated mass, and is connected to the inertial frame by means of four
flexible beams with adjustable length, i.e. adjustable springs. This arrangement allows only
linear motion of the rotor centre and eliminates the gyroscopic effects due to angular motion of
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Fig. 1. (a) Test rig built by: rotor-foundation supported by flexible beams; four flexible rotating beam with tip masses

attached to their ends; electromagnetic shaker attached to foundation by means of a wire; and acceleration sensors fixed

to foundation. (b) Mechanical model illustrating: reference frames I and B1; degrees of freedom zoðtÞ; z1ðtÞ; z2ðtÞ; z3ðtÞ;
z4ðtÞ; and main reference points O and Oi ði ¼ 1;y; 4Þ:

I.F. Santos et al. / Journal of Sound and Vibration 271 (2004) 883–904 885



the rotor–foundation. Thus, the mass–spring system has only one degree of freedom, i.e. linear
displacement in the horizontal direction.

* Four masses (particles) are connected to the rotating disc by means of flexible beams (blades)
with adjustable length. The movements of the tip masses are described by linear displacements
in the rotating reference frame. Only the first beam bending mode is of importance in the
defined range of frequencies.

* An electromagnetic shaker is used to excite the mass–spring system in the horizontal direction.
An acceleration sensor is used to measure the linear movements of the mass–spring system and
indirectly detect changes of the blade dynamic behaviour.

* The test rig damping, specifically the damping factor related to the blade mode shapes, is kept
extremely small. This facilitates the measurements while capturing the blades’ vibrations by
means of an acceleration sensor attached to the non-rotating part of the test rig.

The tip mass considerably influences the dynamic response of the beam, once it strengthens the
coupling between the dynamic terms and elastic ones [10,11]. The restriction of the motion in the
vertical plane allows theoretical as well as experimental analyses to be carried out with a 2-D
model in the frequency range of 0–50 Hz:

3. Mathematical model of rotor–blades assembly

The mechanical model for representing the test rig is illustrated in Fig. 1(b). The model
parameters are shown in Table 1. The associate mathematical model has five degrees of freedom,
qðtÞ ¼ fzoðtÞ z1ðtÞ z2ðtÞ z3ðtÞ z4ðtÞg

T; where the first co-ordinate, zo describes the horizontal
motion of the mass–spring system, and the other four, zi ði ¼ 1; 2; 3; 4Þ; represent the displacement
of the tip masses pi relative to the rotating co-ordinate system B1ðx1; y1Þ: The co-ordinate system
B1 rotates with angular speed ’f:

The displacement and velocity of each blade are described using a shadow reference frame Bpi

ðxpi
; ypi

Þ: This shadow system rotates with the same angular speed ’f of the frame B1; but with a
constant phase of yi from the x1-axis. The angles yi are related to the distribution of the beams
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Table 1

Main parameters of the test rig

Mass–spring system Flexible rotating beams ði ¼ 1; 2; 3; 4)

yi ði � 1Þp=2 rad

m0 2:228 kg mi 0:0482 kg

r0 0:040 m ri 0:040 m

L0 0:200 m Li 0:046 m

b0 0:025 m bi 0:015 m

h0 0:001 m hi 0:0005 m

E 2:1e þ 11 N=m2 Ei 2:1e11 N=m2

I0 2:0833e � 12 m4 Ii 1:5625e � 13 m4

k0 2:625 N=m; ki 384:5 N=m
E 2e � 6 m rti 0:015 m

Iti 4:0167e � 6 kg m2
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around the rotor periphery. Such a reference frame simplifies the description of the beam
deformation field. Using this system the absolute velocity of each blade pi is given by

Bpi
vpi

¼Bpi
vOi

þBpi
xBpi

� ðBpi
Li þBpi

uiÞ þ
d

dt
ðBpi

uiÞ; ð1Þ

where vOi
is the velocity vector of point Oi; which the blade is fixed to, xBpi

is the angular velocity
of the shadow system Bpi

: The position of the non-deformed blade-tip mass is given by Li; a vector
from the clamping point Oi to the beam tip, and its displacement due to flexibility is written as ui:

The blades are modelled as Euler–Bernoulli beams with a tip mass attached to their free end.
Neither shear force nor rotatory inertia, nor distributed mass of the beam, are taken into account.
However, the finite dimensions of the tip mass cannot be neglected, as can be seen in Fig. 1(b). In
this case, both mass mi and rotatory inertia Iti must be included in the formulation. Moreover, the
distance from the gravity centre of the tip mass to its clamping at the beam rti shall also be
included.

The beam displacement is interpolated using a cubic polynomial, satisfying essential conditions,
which are the clamping to the rotor at the point Oi: This shape function is chosen aiming at
minimizing the number of degrees of freedom of the model. Such a function approximates only
the first bending mode of the beam. According to that, the elastic displacement of the beam is
given by

Bpi
ui ¼

0

viðxiÞ

0

8><
>:

9>=
>; ¼

0

ciðxiÞziðtÞ

0

8><
>:

9>=
>; where ciðxiÞ ¼

3

2

xi

Li

� 	2

�
1

2

xi

Li

� 	3

: ð2Þ

The rotatory inertia of the tip is taken into account assuming that the derivative of the tip
displacement is equal to its angular motion (no shear force). Using this approach an equivalent
mass is estimated so that the effects of rotatory inertia are included on the mathematical model.
This equivalent mass is given by

%mi ¼ micðLiÞ
2 þ ðIti þ mirt2i Þc

0ðLiÞ
2 þ 2mirticðLiÞc

0ðLiÞ: ð3Þ

The equations of motion of the rotor–blades assembly are obtained using the Newton–Euler–
Jourdain’s equation [12]. The mass–spring potential energy po corresponds to the energy stored in
the long beams of the foundation, while pli to the potential energy due to the blade bending
deformation. The energy pli is obtained using linear approach (no longitudinal displacements).
The term pgi

is related to the blade geometrical stiffness. The three terms are

po ¼
1

2
koz2

o; ð4aÞ

pli ¼
1

2

Z Li

0

EI
@2vi

@x2
i

 !2

dxi ¼
1

2
kiz

2
i where ki ¼

3EI

L3
i

; ð4bÞ

pgi
¼

1

2

Z Li

0

Npi
ðxiÞ

@vi

@xi

� 	2

dxi; ð4cÞ

where Npi
ðxiÞ is the normal force, due to centrifugal acceleration, acting on the blade pi:
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In the linear model only the terms p0 and pli are taken into account. The inclusion of pgi
means

taking into account the second non-linear terms of the deformation vector, leading to second order
linearized model. The fully non-linear model is obtained assuming that there is a longitudinal
displacement resulting from a large transversal beam displacement. No axial deformation is taken
into account and only the terms p0 and pli are included in this model, so that the non-linear terms
of the deformation vector are implicitly considered [6,13]. In this case, the elastic displacement is
given by

Bpi
ui ¼

uiðxiÞ

viðxiÞ

0

8><
>:

9>=
>; ¼

uiðxiÞ

ciðxiÞziðtÞ

0

8><
>:

9>=
>;; where ui ¼ �

1

2

Z xi

0

@vi

@x

� 	2

dx: ð5Þ

The equations of motion for the three models, considering a rotor eccentricity E; are:

* Linear model

M0 .qþ C’qþ ðK0 þ K1 þ K2 þ Kp1
Þq ¼ f1 þ f2 þ fp: ð6aÞ

* Second-order linearized model

M0 .qþ C’qþ ðK0 þ K1 þ K2 þ K3 þ Kp1
Þq ¼ f1 þ f2 þ fp: ð6bÞ

* Fully non-linear model

ðM0 þM1 þM2Þ.qþ C’qþ ðK0 þ K1 þ K2 þ K3 þ Kp1
þ Kp2

Þq

¼ f1 þ f2 þ fp þ s0 þ s1 þ s2 þ s3: ð6cÞ

Each of these matrices and vectors is presented in Appendix A. Such matrices and vectors
illustrate in a very transparent way the mathematical structure of the dynamic coupling between
rotating and non-rotating parts of the assembly. The coupling coefficients inside the matrices are
time-dependent, varying with the angle fðtÞ: If the rotor operates with constant speed, the
coefficients of these matrices are periodic. This kind of time-varying behaviour in the matrix
coefficients introduces a parametric excitation into the system. It is important to outline that the
time-varying terms in the matrices M0; M1; M2; C; K1 and K2; occur in the positions
corresponding to the coupling among the rotor-foundation and blades. However, the structural
stiffness matrix, K0 is constant.

In Eqs. (6a)–(6c), it should be noted that one model contains the other, depending on the
rotational speed and amplitudes of vibrations involved. For example, the second order linearized
model is obtained from the linear model by including the geometric stiffness matrix, K3: It should
be noted that this matrix K3 appears in both the second order linearized model and in the non-
linear. Although the geometric stiffness is not explicitly included in the non-linear model, it arises
from the second order non-linear terms in Eq. (5). The fully non-linear model includes also
matrices and vectors which are dependent on blade displacement and velocity. Furthermore, it
includes non-linear terms dependent on the square of the tip mass displacements that play an
important role only when such displacements are large.
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4. Theoretical and experimental results

4.1. Theoretical modal analysis

Initially, results are obtained when the rotor angular velocity is set to null. In this case, the
equations of motion (6a)–(6c) are reduced to the non-rotating case, setting f ¼ ’f ¼ .f ¼ 0: Such a
theoretical modal analysis allows a better understanding of how the rotor-foundation motion is
coupled to blade vibrations, before the rotational speed is introduced into the problem. Fig. 2
illustrates the five vibration modes of this assembly. It should be noted that the first and fifth
modes present coupled motions among blades and foundation, while the second, third and fourth
modes are only associated to the blade motions. The values of normalized eigenvectors are shown
in Table 2. For simplicity, the first mode will be called rotor–blade mode (RB), once the
horizontal motion of the rotor-foundation system is much larger than the blade motions. Modes
two, three and four are blade modes (BB), once no horizontal motion of the rotor-foundation can
be detected. Finally, the fifth mode represents a coupled blade–rotor mode (BR), once the blade
motion is much larger than the rotor-foundation motion.
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Fig. 2. Natural mode shapes of the assembled rotor–blade system when ’f = 0—numerical results.
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The theoretical results indicate that the natural frequencies related to the blade modes (BB) and
coupled blade–rotor mode (BR), according to Fig. 2, are very close to each other. Therefore, when
setting up the experiment, a reasonable increment of frequency Df should be carefully chosen, so
that the different natural frequencies associated to modes (BB) and (BR) can be correctly
identified. In other words, a long acquisition time is necessary in order to achieve reasonable
precision in frequency domain results. In practical applications, such an increment of frequency
and total acquisition time will be strongly dependent on the rotor–blade mass ratio. In this work
the increment of frequency and acquisition time will be dependent on the mass relationship
between rotor-foundation and tip mass.

4.2. Influence of mass ratio on the coupling modes

As noted previously, the natural frequencies related to (BB) and (BR) modes are extremely
close to each other. Fig. 3 illustrates how the natural frequencies of the assembly change as a
function of the mass ratio mi=m0; relation between the tip mass and rotor-foundation mass. The
dash-dot vertical line in the plot at mi=m0 ¼ 0:0482=2:228 ¼ 0:0216 indicates where the mass ratio
of the test rig is located. It can easily be seen that the difference between the frequencies associated
with blade mode (BB) and blade–rotor coupled mode (BR) is very small, in this case. However, as
the mass ratio increases the difference between the natural frequencies associated to (BB) and
(BR) modes increases as well.

As the mass ratio is increased the coupling between rotor and blade co-ordinates becomes
stronger, as can be seen in Figs. 4(a)–(c) for the (RB) mode and in Figs. 4(d)–(f) for the (BR)
mode. When the mass ratio tends to zero, there is no coupling between rotor and blade motions.
Whereas at higher mass ratio, both blade and rotor co-ordinates are highly coupled.

4.3. Waterfall diagram—parametric vibration and stiffening effect

The waterfall diagrams are created with the aim of investigating the variation of the natural
frequencies and parametric vibrations of the assembly as a function of the rotational speed. Two
different excitation points are used: rotor support and blade 1. The rotor is also excited by its
unbalance E: The responses of the rotor support and the blade 1 due to an impulsive excitation on
the rotor are illustrated in Figs. 5 and 6 respectively. The response of the rotor support and the
blade 1 due to an impulsive excitation on the blade 1 are illustrated in Figs. 7 and 8 respectively.
In such figures the acceleration of the assembly in time domain is numerically obtained with help
of the three models described by Eqs. (6a)–(6c). The mass–spring acceleration is transformed into
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Table 2

Non-rotating system—theoretical mode shapes

Mode (RB) Mode (BB) Mode (BB) Mode (BB) Mode (BR)

z0 1 0 0 0 0.071

z1 0 0 0 1 0

z2 �0.096 1 0 0 1

z3 0 0 1 0 0

z4 0.096 1 0 0 �1
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the frequency domain by a FFT procedure. The amplitude of the FFT plots is normalized using
the maximum value of the FFT-peaks at each one of the rotational speeds.

The theoretical waterfall diagrams presented in Figs. 5 and 6 clearly show the main
characteristics of the system under analysis: centrifugal stiffening (increasing of the beam natural
frequencies due to rotational speed) and appearance of parametric vibration, once the matrices
are periodically varying with respect to the time. Parametric vibrations are vibrations whose
frequency is obtained from basis-eigenvalues of the system [14–17] but added or subtracted from
the changing parameter, which is, in this case, the rotational speed ’f ¼ O: Figs. 5(a)–(c) show that
the theoretical diagrams, obtained while exciting and measuring the foundation linear movement,
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Fig. 5. Theoretical waterfall diagram showing the variation of the critical frequencies of the assembly as a function of

the rotational speed. Excitation acting on the support mass and vibration response of the support mass on the base: (A)

frequency related to the rotational speed ’f; (B) frequency related to the parametric vibration of the mode (BR), o5 þ ’f;
(C) frequency related to the parametric vibration of the mode (BR), o5 � ’f; (D) frequency o1 related to the mode shape

(RB), where o1 ¼ 6:39 Hz:
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present significant deviation among themselves. The results obtained with the linear model,
Fig. 5(a) does not agree with the results obtained with the other two models in the whole range of
rotational speeds. For a better understanding of Fig. 5, Figs. 6(a)–(c) have to be analyzed.

Fig. 6 illustrates the blade response (acceleration) obtained with the same excitation acting on
the foundation. In this case, the behaviour of the blade natural frequency and its centrifugal
stiffening are clearly observed in Figs. 6(b) and (c). Some of the peaks appearing in these diagrams
of Fig. 6 are different from those appearing in Fig. 5, where the system response (acceleration) is
measured at the foundation. In fact, the two peaks in Fig. 6 are related to the blade natural
frequencies and to the rotational speed itself, peaks indicated by (B) and (A) respectively. Using
the linear model, Eq. (6a), the natural frequency of the rotating beam lightly decreases as a
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Fig. 6. Theoretical waterfall diagram showing the variation of the natural frequencies of the assembly as a function of

the rotational speed. Excitation acting on the support mass and vibration response of blade 1: (A) frequency related to

the rotational speed ’f; (B) frequency related to the blade vibrations, o2 ¼ o3 ¼ o4; mode shape (BB).
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function of the rotor angular velocity, see Fig. 6(a), peaks indicated by (B). Based on the second
order linearized model and full non-linear model the natural frequency of the rotating beam
increases as a function of the rotor angular velocity. The peaks on the right-hand side of
Figs. 5(a)–(c), which open in a V-form and are indicated by (B) and (C), are related to parametric
vibrations of the frequencies associated to the mode (BR). The natural frequency associated to the
mode (BR) has the same behaviour as the frequency related to the mode (BB). Such parametric
vibrations can only be detected while observing the linear vibrations of the support from the
stationary reference frame. Vibration measurements of the assembly in the inertial and rotating
reference frames will lead to peaks in different frequencies, as can be seen comparing Figs. 5
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the rotational speed. Excitation acting on the blade 1 and vibration response of the support mass: (A) frequency related

to the rotational speed ’f; (B) frequency related to the parametric vibration of the mode (BR), o5 þ ’f; (C) frequency
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and 6. The linear model predicts a reduction of the blade natural frequencies in the range of
rotational speed, as can be seen in Fig. 6(a). The peak related to the parametric vibration
associated to the coupled blade–rotor modes (BR), o5 � ’f; peaks indicated by (C) in Fig. 6, tends
to null and grows again. This behaviour, obtained with help of the linear model, is completely
different from those predicted by the other two models, second order linearized and fully non-
linear.

In Figs. 7 and 8 the excitation is acting on one of the blades and the vibration responses are
observed at the rotor-foundation (stationary reference frame) and at the blade (rotating reference
frame), respectively. A similar behaviour to Figs. 5 and 6 can be seen. Discrepancies among the
linear, second order linearized and fully non-linear models can be clearly seen. Comparing now
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Fig. 8. Theoretical waterfall diagram showing the variation of the natural frequencies of the assembly as a function of

the rotational speed. Excitation acting on blade 1 and vibration response of the blade 1: (A) frequency related to the

rotational speed ’f; (B) frequency related to the blade vibrations, o2 ¼ o3 ¼ o4; mode shape (BB).
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the second order linearized, Fig. 8(b) and the fully non-linear models, Fig. 8(c), significant
discrepancies can be detected only for null rotor angular velocity. While exciting the assembly at
one of the blades, inducing large tip mass movements, super-harmonics of the blade frequencies
o2 ¼ o3 ¼ o4 ¼ 17:34 Hz can appear in the waterfall diagram (see peak at the frequency of
2 � 17:34 ¼ 34:68 Hz in Fig. 7(c), when the rotational speed is null). Parametric vibrations
associated to the super-harmonics can also be seen, but with very small amplitudes. Such effect is
not obtained either using the linear nor the second order linearized model.

4.4. Experimental results

An experimental waterfall diagram is built using data from the test rig. The mass–spring system
is excited by means of an impulse, generated with help of a signal generator (type 2032, B&K) and
introduced into the assembly by means of the electromagnetic shaker (type 4810, B&K). The
acceleration of the mass–spring system in time domain is measured using an accelerometer (type
4384, B&K) and a charge amplifier (type 2635, B&K). The acceleration signal is acquired using a
PC, a digital signal processing card DT3801-G and HP-VEE software. The acquisition of the
acceleration signal is triggered with help of the HP-VEE function trigger and the impulse signal.
After acquiring the acceleration and impulse signals, all additional signal processing is done with
help of the Matlab software. The highest frequency resolution used is Df ¼ 0:088 Hz: After
transforming the signal into the frequency domain via FFT, it is normalized using the maximum
amplitude of the FFT at each of the rotational speeds and plotted, as can be seen in Fig. 9.

When the rotor angular velocity is zero, two frequencies can be clearly recognized in the
experimental waterfall diagram: o1 ¼ 6:6 Hz and o5 ¼ 17:0 Hz: The frequency associated with
mode (RB), o1 ¼ 6:6 Hz; is not strongly influenced by the rotor angular velocity, as can be seen in
the waterfall diagram, Fig. 9. The frequency related to the mode (BR), 17:0 Hz; is strongly
influenced by the rotor angular velocity, as was also observed in the theoretical results.
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Nevertheless, with the acceleration sensor mounted directly on the support mass and excitation
acting also on the support mass, only the parametric vibrations of the natural frequency o5;
associated to the mode (BR), can be detected. Due to the stiffening effect, the frequency
associated with mode (BB) increases parabolically with the rotational speed, and the frequency
related to the mode (BR) follows the same behaviour. Nevertheless, in the waterfall diagram
only o5 � ’f and o5 þ ’f are detectable. The results obtained experimentally in Fig. 9 can be
compared to those obtained with help of the linear model, Fig. 5(a), second order linearized,
Fig. 5(b), and fully non-linear model, Fig. 5(c). One can clearly conclude that the second order
linearized and fully non-linear models are able to correctly predict the stiffening effect and the
parametric vibrations. The linear model can correctly estimate this behaviour only for extremely
low frequencies, where the stiffening effect is of minor importance.

Table 3 shows the comparison among theoretical results, both with and without damping, and
experimental ones. The experimental damping for the mode (RB) was adjusted using modal
techniques [18], when the rotational speed of the assembly was set to null. Table 3 illustrates that
when adding damping to the rotor-foundation system only the modes (RB) and (BR) are affected
by the presence of damping. The modes (BB) associated to the blade motion are still undamped. If
dissipation of blade vibration energy is aimed, dissipation mechanisms have to be attached at the
rotating reference frame [19].

In Figs. 10(a) and (b) the experimental acceleration of the support mass is presented, when an
impulsive excitation acts on the support mass and on blade 1 respectively. The results are
presented in time as well as in frequency domains, and show beating and non-linear effects (super-
harmonics due to blade vibrations with large amplitudes). The fundamental frequency is 16:5 Hz:
This frequency is associated to the modes (BB), where o2 ¼ o3 ¼ o4 ¼ 16:5 Hz; see Fig. 2. Its
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Table 3

Non-rotating system—theoretical and experimental frequencies

Mode 1 (RB) Mode 2 (BB) Mode 3 (BB) Mode 4 (BB) Mode 5 (BR)

Theo. (Hz) 6.39 17.34 17.34 17.34 17.73

Exp. (Hz) 6.60 16.5 16.5 16.5 17.0

Diff. (%) 3.18 5.09 5.09 5.09 4.29

No damping

z0 1 0 0 0 0.0716

z1 0 0 0 1 0

z2 �0.0960 1 0 0 1

z3 0 0 1 0 0

z4 0.0960 1 0 0 �1

Damping at foundation do ¼ 13:1 N m=s
z0 0.9979�0.0021i 0 0 0 0.0714 + 0.0040i

z1 0 0 0 1 0

z2 �0.0945�0.0145i 1 0 0 1

z3 0 0 1 0 0

z4 0.0945 + 0.0145i 1 0 0 �1
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super-harmonic component, 2 � o2 ¼ 33:0 Hz; can be experimentally detected in Fig. 10(b), and
also predicted by the fully non-linear model, see Fig. 8(c). The natural frequency associated to the
mode (BR) is o5 ¼ 17:0 Hz: When the blade is excited, strong blade-structure coupled vibrations
are detected, as can be seen in Fig. 10(b) in time domain. The beating is resulting from the small
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Fig. 10. Experimental acceleration of the support mass due to an impulsive excitation acting: (a) on the support mass;

(b) on one of the blades—rotor angular velocity is null.
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difference between the natural frequencies related to the modes (BB) and (BR), 16.5 and 17:0 Hz
respectively.

5. Conclusion

Comparing the results coming from the three different mathematical models to the
experimental ones, the second order linearized and fully non-linear models are those which can
correctly predict the stiffening effect and coupled parametric vibrations of the rotor–blade
assembly. The linear model can correctly estimate parametric vibrations only in a short range of
low rotational speed, where the stiffening effect is of minor importance. Super-harmonic vibration
associated to the movement of the flexible rotating parts (with large amplitude) can only be
detected with the help of the fully non-linear model.

From the viewpoint of vibration monitoring in rotating flexible structures one can conclude
that the positioning of sensors at stationary or rotating reference frames will lead to peaks in
different frequencies. With sensors attached to the non-rotating part of the structure (inertial
reference frame) one will detect parametric vibrations related to the coupled mode shapes of the
flexible rotating parts and flexible non-rotating parts.

In rotor–bearing systems coupled to flexible blades, the lighter the flexible blades are, the closer
are the modes (BB) and (BR). It means that a long acquisition time is necessary in order to achieve
a reasonable precision in the frequency domain and correctly identify both frequencies and
modes.
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Appendix A. Matrices and vectors

M0 ¼

m0 þ
Pp¼4

i¼1

mi Sym

� m1ð2L1þ3rt1Þ
2L1

sinðfþ y1Þ
9It1þm1ð2L1þ3rt1Þ

2

4L2
1

� m2ð2L2þ3rt2Þ
2L2

sinðfþ y2Þ 0
9It2 þ m2ð2L2 þ 3rt2Þ

2

4L2
2

� m3ð2L3þ3rt3Þ
2L3

sinðfþ y3Þ 0 0
9It3 þ m3ð2L3 þ 3rt3Þ

2

4L2
3

� m4ð2L4þ3rt4Þ
2L4

sinðfþ y4Þ 0 0 0
9It4 þ m4ð2L4 þ 3rt4Þ

2

4L2
4

2
666666666666666664

3
777777777777777775

;

ðA:1Þ
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M1 ¼

0 Sym

� 9m1rt1
4L2

1

z1 cosðfþ y1Þ 0

� 9m2rt2
4L2

2

z2 cosðfþ y2Þ 0 0

� 9m3rt3
4L2

3

z3 cosðfþ y3Þ 0 0 0

� 9m4rt4
4L2

4

z4 cosðfþ y4Þ 0 0 0 0

2
6666666664

3
7777777775

þ

0 Sym

� 6m1

5L1
z1 cosðfþ y1Þ 0

� 6m2

5L2
z2 cosðfþ y2Þ 0 0

� 6m3

5L3
z3 cosðfþ y3Þ 0 0 0

� 6m4

5L4
z4 cosðfþ y4Þ 0 0 0 0

2
666666664

3
777777775
; ðA:2Þ

M2 ¼

0 Sym

27m1rt1
16L3

1

z2
1 sinðfþ y1Þ � 27m1rt1

8L3
1

z2
1

27m2rt2
16L3

2

z2
2 sinðfþ y2Þ 0 � 27m2rt2

8L3
2

z2
2

27m3rt3
16L3

3

z2
3 sinðfþ y3Þ 0 0 � 27m3rt3

8L3
3

z2
3

27m4rt4
16L3

4

z2
4 sinðfþ y4Þ 0 0 0 � 27m4rt4

8L3
4

z2
4

2
6666666664

3
7777777775

þ

0 Sym

0 ð36L1þ135rt1Þm1

25L3
1

z2
1

0 0 ð36L2þ135rt2Þm2

25L3
2

z2
2

0 0 0 ð36L3þ135rt3Þm3

25L3
3

z2
3

0 0 0 0 ð36L4þ135rt4Þm4

25L3
4

z2
4

2
6666666664

3
7777777775
; ðA:3Þ

K0 ¼

k0 0 0 0 0

0 k1 0 0 0

0 0 k2 0 0

0 0 0 k3 0

0 0 0 0 k4

2
6666664

3
7777775
; ðA:4Þ
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Kp1
¼ g

0 0 0 0 0

0 �m1
6 sinðy1þfÞ

5L1
0 0 0

0 0 �m2
6 sinðy2þfÞ

5L2
0 0

0 0 0 �m3
6 sinðy3þfÞ

5L3
0

0 0 0 0 �m4
6 sinðy4þfÞ

5L4

2
666666664

3
777777775

ðA:5Þ

Kp2
¼ g

0 0 0 0 0

0 � 9rt1
4L2

1

sinðfþ y1Þ 0 0 0

0 0 � 9rt2
4L2

2

sinðfþ y2Þ 0 0

0 0 0 � 9rt3
4L2

3

sinðfþ y3Þ 0

0 0 0 0 � 9rt4
4L2

4

sinðfþ y4Þ

2
6666666664

3
7777777775
; ðA:6Þ

K1 ¼ ’f2

0 m1ð2L1þ3rt1Þ
2L1

sinðfþ y1Þ
m2ð2L2þ3rt2Þ

2L2
sinðfþ y2Þ

m3ð2L3þ3rt3Þ
2L3

sinðfþ y3Þ
m4ð2L4þ3rt4Þ

2L4
sinðfþ y4Þ

0 � 4L2
1
þ3rt1ðL1�3rt1Þ

4L2
1

m1 0 0 0

0 0 � 4L2
2
þ3rt2ðL2�3rt2Þ

4L2
2

m2 0 0

0 0 0 � 4L2
3
þ3rt3ðL3�3rt3Þ

4L2
3

m3 0

0 0 0 0 � 4L2
4
þ3rt4ðL4�3rt4Þ

4L2
4

m4

2
666666666664

3
777777777775
;

ðA:7Þ

K2 ¼ .f

0 � m1ð2L1þ3rt1Þ
2L1

cosðfþ y1Þ � m2ð2L2þ3rt2Þ
2L2

cosðfþ y2Þ � m3ð2L3þ3rt3Þ
2L3

cosðfþ y3Þ � m4ð2L4þ3rt4Þ
2L4

cosðfþ y4Þ

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
66666664

3
77777775
;

ðA:8Þ

K3 ¼ ’f2

0 0 0 0 0

0 m1
6ðL1þr1þrt1Þ

5L1
0 0 0

0 0 m2
6ðL2þr2þrt2Þ

5L2
0 0

0 0 0 m3
6ðL3þr3þrt3Þ

5L3
0

0 0 0 0 m4
6ðL4þr4þrt4Þ

5L4

2
666666664

3
777777775
; ðA:9Þ
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C ¼ ’f

0 � m1ð2L1þ3rt1Þ
L1

cosðfþ y1Þ � m2ð2L2þ3rt2Þ
L2

cosðfþ y2Þ � m3ð2L3þ3rt3Þ
L3

cosðfþ y3Þ � m4ð2L4þ3rt4Þ
L4

cosðfþ y4Þ

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
66666664

3
77777775
;

ðA:10Þ

fp ¼ �g

0

m1
2L1þ3rt1

2L1
cosðfþ y1Þ

m2
2L2þ3rt2

2L2
cosðfþ y2Þ

m3
2L3þ3rt3

2L3
cosðfþ y3Þ

m4
2L4þ3rt4

2L4
cosðfþ y4Þ

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
; ðA:11Þ

f1 ¼ ’f2

em0 cosðfþ jÞ þ
Pp¼4

i¼1

miðLi þ ri þ rtiÞ cosðfþ yiÞ

0

0

0

0

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
; ðA:12Þ

f2 ¼ .f

em0 sinðfþ jÞ þ
Pp¼4

i¼1

miðLi þ ri þ rtiÞ sinðfþ yiÞ

� 3It1þm1ðL1þr1þrt1Þð2L1þ3rt1Þ
2L1

� 3It2þm2ðL2þr2þrt2Þð2L2þ3rt2Þ
2L2

� 3It3þm3ðL3þr3þrt3Þð2L3þ3rt3Þ
2L3

� 3It4þm4ðL4þr4þrt4Þð2L4þ3rt4Þ
2L4

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
; ðA:13Þ

s0 ¼

Pp¼4

i¼1

9mirti

4L2
i

’z2
i cosðfþ yiÞ � 27mirti

8L3
i

zi ’z
2
i sinðfþ yiÞ þ 81mirti

32L4
i

z2
i ’z

2
i cosðfþ yiÞ

27m1rt1g

16L3
1

cosðfþ y1Þz2
1 þ

27m1rt1
8L3

1

z1 ’z
2
1

27m2rt2g

16L3
2

cosðfþ y2Þz2
2 þ

27m2rt2
8L3

2

z2 ’z
2
2

27m3rt3g

16L3
3

cosðfþ y3Þz2
3 þ

27m3rt3
8L3

3

z3 ’z
2
3

27m4rt4g

16L3
4

cosðfþ y4Þz2
4 þ

27m4rt4
8L3

4

z4 ’z
2
4

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;
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þ

Pp¼4

i¼1

6mi

5Li
’z2
i cosðfþ yiÞ

� 36mp1

25L2
1

z1 ’z
2
1 �

27m1rt1g

5L3
1

z1 ’z
2
1 þ

243m1rt1
80L5

1

z3
1 ’z

2
1

� 36mp2

25L2
2

z2 ’z
2
2 �

27m2rt2g

5L3
2

z2 ’z
2
2 þ

243m2rt2
80L5

2

z3
2 ’z

2
2

� 36mp3

25L2
3

z3 ’z
2
3 �

27m3rt3g

5L3
3

z3 ’z
2
3 þ

243m3rt3
80L5

3

z3
3 ’z

2
3

� 36mp4

25L2
4

z4 ’z
2
4 �

27m4rt4g

5L3
4

z4 ’z
2
4 þ

243m4rt4
80L5

4

z3
4 ’z

2
4

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

; ðA:14Þ

s1 ¼ .f

� 9
8

Pp¼4

i¼1

mirti

L2
i

z2
i sinðfþ yiÞ

9m1ðL1þ3r1Þrt1
16L3

1

z2
1

9m2ðL2þ3r2Þrt2
16L3

2

z2
2

9m3ðL3þ3r3Þrt3
16L3

3

z2
3

9m4ðL4þ3r4Þrt4
16L3

4

z2
4

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

þ .f

� 3
5

Pp¼4

i¼1

mi

Li
z2

i sinðfþ yiÞ

� 3m1

5L1
z2
1 �

9m1rt1
10L1

z2
1 �

81m1rt1
80L1

z4
1

� 3m2

5L2
z2
2 �

9m2rt2
10L2

z2
2 �

81m2rt2
80L2

z4
2

� 3m3

5L3
z2
3 �

9m3rt3
10L3

z2
3 �

81m3rt3
80L3

z4
3

� 3m4

5L4
z2
4 �

9m4rt4
10L4

z2
4 �

81m4rt4
80L4

z4
4

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
; ðA:15Þ

s2 ¼ ’f2

� 9
8

Pp¼4

i¼1

mirti

L2
i

z2
i cosðfþ yiÞ

� 27m1rt1
16L3

1

z3
1

� 27m2rt2
16L3

2

z3
2

� 27m3rt3
16L3

3

z3
3

� 27m4rt4
16L3

4

z3
4

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

þ ’f2

� 3
5

Pp¼4

i¼1

mi

Li
z2

i cosðfþ yiÞ

18m1

25L2
1

z3
1 þ

81m1rt1
80L3

1

z3
1

18m2

25L2
2

z3
2 þ

81m2rt2
80L3

2

z3
2

18m3

25L2
3

z3
3 þ

81m3rt3
80L3

3

z3
3

18m4

25L2
4

z3
4 þ

81m4rt4
80L3

4

z3
4

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

; ðA:16Þ

s3 ¼ ’f

� 9
8

Pp¼4

i¼1

4mirti

L2
i

zi ’zi sinðfþ yiÞ þ 3mirti

L3
i

z2
i ’zi cosðfþ yiÞ

0

0

0

0

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

þ ’f
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5

Pp¼4

i¼1
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Li
zi ’zi sinðfþ yiÞ

0

0

0

0
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